Variation

Model List

* The code in \square represents followings; A(Asia), K(Korea, Taiwan), C(China), J(Japan)

How to read the inverter model

Caution The contents of this catalog are provided to help you select the product model that is best for you. Before actual use, be sure to read the User's Manual thoroughly to assure correct operation.

Specifications

-Standard type

■Three-phase 200V series

Item			Specifications										
Type (FRN $\square \square \square \mathrm{E}$ 1S-2A/K/C/J)			0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
Applicable motor rating [kW] (*1)			0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
	Rated capacity [kVA]		0.30	0.57	1.1	1.9	3.0	4.1	6.4	9.5	12	17	22
	Rated voltage [V] (*3)		Three-phase 200V to 240V (with AVR function)										
	Rated current [A] (*4)		$\begin{gathered} 0.8 \\ (0.7) \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ (1.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.0 \\ (2.5) \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ (4.2) \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ (7.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ (16.5) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ (23.5) \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ (31) \\ \hline \end{gathered}$	$\begin{gathered} 47 \\ (44) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (57) \\ \hline \end{gathered}$
	Overload capability		150\% of rated current for $1 \mathrm{~min}, 200 \%-0.5 \mathrm{~s}$										
	Rated frequency [Hz]		$50,60 \mathrm{~Hz}$										
	Phases, voltage, frequency		Three-phase, 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$										
	Voltage/frequency variations		Voltage: +10 to -15% (Voltage unbalance (*8): 2% or less) Frequency: +5 to -5%										
	Rated current [A] (*9)	(with DCR)	0.57	0.93	1.6	3.0	5.7	8.3	14.0	21.1	28.8	42.2	57.6
		(without DCR)	1.1	1.8	3.1	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80
	Required power supply capacity [kVA] (*5)		0.2	0.3	0.6	1.1	2.0	2.9	4.9	7.4	10	15	20
	Torque [\%] (*6)		150		100		70	40		20			
	Torque [\%] (*7)		-		150								
	DC injection braking		Starting frequency: 0.1 to 60.0 Hz , Braking time: 0.0 to 30.0s, Braking level: 0 to 100% of rated current										
	Braking transistor		Built-in										
Applicable safety standards			UL508C, C22.2No.14, EN50178:1997										
Enclosure (IEC60529)			IP20, UL open type										
Cooling method			Natural cooling				Fan cooling						
Weight / Mass [kg]			0.6	0.6	0.7	0.8	1.7	1.7	2.3	3.4	3.6	6.1	7.1

Three-phase 400V series

Item			Specifications								
Type (FRN $\square \square \square \mathrm{E}$ 1S-4A/K/C/J)			0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
Applicable motor rating [kW] (*1)			0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
	Rated capacity [kVA]		1.1	1.9	2.8	4.1	6.8	9.9	13	18	22
	Rated voltage [V] (*3)		Three-phase 380 V to 480 V (with AVR function)								
	Rated current [A] (*4)		1.5	2.5	3.7	5.5	9.0	13	18	24	30
	Overload capability		150\% of rated current for $1 \mathrm{~min}, 200 \%-0.5 \mathrm{~s}$								
	Rated frequency [Hz]		50,60Hz								
	Voltage/frequency variations		Three-phase, 380 to 480V, 50/60Hz								
			Voltage: +10 to -15\% (Voltage unbalance (*8): 2% or less) Frequency: +5 to -5%								
	Rated current [A] (*9)	(with DCR)	0.85	1.6	3.0	4.4	7.3	10.6	14.4	21.1	28.8
		(without DCR)	1.7	3.1	5.9	8.2	13.0	17.3	23.2	33.0	43.8
	Required power supply capacity [kVA] (*5)		0.6	1.1	2.0	2.9	4.9	7.4	10	15	20
	Torque [\%] (*6)		100		70	40		20			
	Torque [\%] (*7)		150								
	DC injection braking		Starting frequency: 0.1 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 100% of rated current								
	Braking transistor		Built-in								
Applicable safety standards			UL508C, C22.2No.14, EN50178:1997								
Enclosure (IEC60529)			IP20, UL open type								
Cooling methodWeight / Mass [kg]			Natural cooling		Fan cooling						
			1.1	1.2	1.7	1.7	2.3	3.4	3.6	6.1	7.1

■Single-phase 200V series

Item			Specifications					
Type (FRN $\square \square \square \mathrm{\square} 1 \mathrm{~S}-7 \mathrm{~A} / \mathrm{K} / \mathrm{C} / \mathrm{J}$)			0.1	0.2	0.4	0.75	1.5	2.2
Applicable motor rating [kW] (*1)			0.1	0.2	0.4	0.75	1.5	2.2
	Rated capacity [kVA] (*2)		0.3	0.57	1.1	1.9	3.0	4.1
	Rated voltage [V] (*3)		Three-phase 200V to 240V (with AVR function)					
	Rated current [A] (*4)		$\begin{gathered} 0.8 \\ (0.7) \end{gathered}$	$\begin{gathered} 1.5 \\ (1.4) \end{gathered}$	$\begin{gathered} 3.0 \\ (2.5) \end{gathered}$	$\begin{gathered} 5.0 \\ (4.2) \end{gathered}$	$\begin{gathered} 8.0 \\ (7.0) \end{gathered}$	$\begin{gathered} \hline 11 \\ (10) \end{gathered}$
	Overload capability		150\% of rated current for $1 \mathrm{~min}, 200 \%-0.5 \mathrm{~s}$					
	Rated frequency [Hz]		$50,60 \mathrm{~Hz}$					
	Phases, voltage, frequency		Single-phase, 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$					
	Voltage/frequency variations		Voltage: +10 to -10%, Frequency: +5 to -5%					
	Rated current [A] (*9)	(with DCR)	1.1	2.0	3.5	6.4	11.6	17.5
		(without DCR)	1.8	3.3	5.4	9.7	16.4	24.8
	Required power supply capacity [kVA] (*5)		0.3	0.4	0.7	1.3	2.4	3.5
	Torque [\%] (*6)		150		100		70	40
	Torque [\%] (*7)		-		150			
	DC injection braking		Starting frequency: 0.1 to 60.0 Hz , Braking level: 0 to 100% of rated current, Braking time: 0.0 to 30.0 s					
	Braking transistor		Built-in					
Applicable safety standards			UL508C, C22.2No.14, EN50178:1997					
Enclosure (IEC60529)			IP20, UL open type					
Cooling method			Natural cooling				Fan cooling	
			0.6	0.6	0.7	0.9	1.8	2.4

(*1) Fuji's 4-pole standard motor
(*2) Rated capacity is calculated by assuming the output rated voltage as 220 V for three-phase 200 V series and 440 V for three-phase 400 V series
(*3) Output voltage cannot exceed the power supply voltage.
${ }^{*} 4$) When setting the carrier frequency (F26) to 3 kHz or less. Use the current () or below when the carrier frequency setting is higher than 4 kHz and continuously operating at 100%.
(*5) Obtained when a DC REACTOR is used
$\left.{ }^{(}{ }^{*} 6\right)$ Average braking torque obtained when reducing the speed from 60 Hz with AVR control OFF (Varies with the efficiency of the motor.)
(*7) Average braking torque obtained by use of external braking resistor (standard type available as option)
(*8) Voltage unbalance $[\%]=\frac{\text { Max voltage }[\mathrm{V}]-\text { Min voltage }[\mathrm{V}]}{\text { Three-phase average voltage }[\mathrm{V}]} \times 67$ (IEC 61800-3)
If this value is 2 to 3%, use AC REACTOR (ACR: option).
(*9) The value is calculated on assumption that the inverter is connected with a power supply capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and $\% \mathrm{X}$ is 5%.

OSemi-standard type

EMC filter built-in type

Three-phase 200 V series(0.1 to 15 kW)

Specifications										
0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
0.30	0.57	1.1	1.9	3.0	4.1	6.4	9.5	12	17	22
Three-phase 200 to 240 V (with AVR)										
$\begin{gathered} \hline 0.8 \\ (0.7) \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ (1.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.0 \\ (2.5) \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ (4.2) \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ (7.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 \\ (10) \\ \hline \end{gathered}$	$\begin{aligned} & 17 \\ & (16.5) \end{aligned}$	$\begin{aligned} & 25 \\ & (23.5) \end{aligned}$	$\begin{gathered} \hline 33 \\ (31) \end{gathered}$	$\begin{aligned} & \hline 47 \\ & (44) \end{aligned}$	$\begin{gathered} 60 \\ (57) \end{gathered}$

150% of rated current for 1 min or 200% of rated current for 0.5 s
$50,60 \mathrm{~Hz}$
Three-phase, 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Voltage: +10 to -15% (Voltage unbalance : 2% or less (*7)) Frequency: +5 to -5%

0.57	0.93	1.6	3.0	5.7	8.3	14.0	21.1	28.8	42.2	57.6
1.1	1.8	3.1	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80
0.2	0.3	0.6	1.1	2.0	2.9	4.9	7.4	10	15	20
150		100		70	40		20			

Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 100%
Built-in
UL508C, C22.2No.14(pending), EN50178:1997
IP20(IEC60529)/UL open type(UL50)
Natural cooling
Class 1A (EN55011:1998/A1:199) Fan cooling
2nd Env. (EN61800-3:1996/A11:2000)

0.7	0.7	0.8	0.9	2.4	2.4	2.9	5.1	5.3	10.3	11.3

Three-phase 400 V series (0.4 to 15 kW)

Item				Specifications								
Type (FRN $\square \square \square \mathrm{E} 1 \mathrm{E}-4 \mathrm{~A} / \mathrm{K} / \mathrm{C} / \mathrm{J}$)				0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
Nominal applied motor [kW] (*1)				0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
	Rated cap	city [kVA]		1.1	1.9	2.8	4.1	6.8	9.9	13	18	22
	Rated voltage [V] (*3)			Three-phase 380 to 480V (with AVR)								
	Rated current [A] (*4)			1.5	2.5	3.7	5.5	9.0	13	18	24	30
	Overload capability			150\% of rated current for 1 min or 200% of rated current for 0.5 s								
	Rated frequency [Hz]			$50,60 \mathrm{~Hz}$								
	Phases, voltage, frequency			Three-phase, 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$								
	Voltage/frequency variations			Voltage:+10 to -15\% (Voltage unbalance: 2% or less (*7)), Frequency: +5 to -5%								
	Rated current [A] (*8)		(with DCR)	0.85	1.6	3.0	4.4	7.3	10.6	14.4	21.1	28.8
			(without DCR)	1.7	3.1	5.9	8.2	13.0	17.3	23.2	33.0	43.8
	Required power supply capacity [kVA] (*5)			0.6	1.1	2.0	2.9	4.9	7.4	10	15	20
	Torque [\%] (*6)			100		70	40		20			
	DC injection braking			Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0s, Braking level: 0 to 100%								
	Braking transistor			Built-in								
Applicable safety standards				UL508C, C22.2No. 14 (pending), EN50178:1997								
Enclosure				IP20 (IEC60529)/UL open type (UL50)								
Cooling method				Natural cooling \quad Fan cooling								
EMC standard compliance		Emission		Class 1A (EN55011:1998/A1:1999)					2nd Env. (EN61800-3:1996+A11:2000)			
		Immunity		2nd Env. (EN61800-3:1996/A11:2000)								
Weight / Mass [kg]				1.5	1.6	2.5	2.5	3.0	4.8	5.0	8.1	9.1

■Single-phase 200 V series(0.1 to 2.2 kW)

Item				Specifications					
Type (FRN $\square \square \square \mathrm{E}$ (E-7A/K/C/J)				0.1	0.2	0.4	0.75	1.5	2.2
Nominal applied motor [kW] (*1)				0.1	0.2	0.4	0.75	1.5	2.2
	Rated capacity [kVA] (*2)			0.3	0.57	1.1	1.9	3.0	4.1
	Rated voltage [V] (*3)			Three-phase 200 to 240V (with AVR)					
	Rated current [A] (*4)			$\begin{gathered} 0.8 \\ (0.7) \end{gathered}$	$\begin{gathered} 1.5 \\ (1.4) \end{gathered}$	$\begin{gathered} \hline 3.0 \\ (2.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.0 \\ (4.2) \end{gathered}$	$\begin{gathered} 8.0 \\ (7.0) \end{gathered}$	$\begin{gathered} \hline 11 \\ (10) \\ \hline \end{gathered}$
	Overload capability			150% of rated current for 1 min or 200% of rated current for 0.5 s					
	Rated frequency [Hz]			$50,60 \mathrm{~Hz}$					
	Phases, voltage, frequency			Single-phase, 200 to 240V, 50/60Hz					
				age: +	Freque				
	Rated current [A] (*8)		(with DCR)	1.1	2.0	3.5	6.4	11.6	17.5
			(without DCR)	1.8	3.3	5.4	9.7	16.4	24.8
	Required power supply capacity [kVA] (*5)			0.3	0.4	0.7	1.3	2.4	3.5
	Torque [\%] (*6)			150		100		70	40
	DC injection braking			Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 100%					
	Braking transistor			Built-in					
Applicable safety standards				UL508C, C22.2No. 14 (pending),EN50178:1997					
Enclosure				IP20 (IEC60529)/UL open type (UL50)					
Cooling method				Natural cooling				Fan cooling	
EMC standard compliance		Emission		Class 1A (EN55011:1998/A1:1999)					
		Immunity		2nd Env. (EN61800-3:1996/A11:2000)					
Weight / Mass [kg]				0.7	0.7	0.8	1.3	2.5	3.0

[^0]${ }^{*}$ 2) Rated capacity is calculated by regarding the output rated voltage as 220 V for three-phase 200 V series
${ }^{\text {*3) }}$) Output voltage cannot exceed the power supply voltage.
$\left.{ }^{*} 4\right)$ The load shall be reduced so that the continuous operating current is the rated current in parenthesis or less if the carrier frequency is set to 4 kHz or above.
$\left.{ }^{*} 5\right)$ Obtained when a DC REACTOR is used.
${ }^{*}$ 6) Average braking torque when a motor of no load decelerates. (Varies with the efficiency of the motor.)
$\left.{ }^{*} 7\right)$ Voltage unbalance $[\%]=\frac{\text { Max. voltage }[V]-\text { Min. voltage }[\mathrm{V}]}{\text { Three-phase average voltage } \mathrm{V}]} \times 67$ (IEC61800-3(5.2.3))
If this value is 2 to 3%, use an AC REACTOR.
*8) The currents are calculated on the condition that the inverters are connected to power supply of $500 \mathrm{kVA}, \% \mathrm{X}=5 \%$.

Specifications

OCommon specifications

Item		Explanation			Remarks	$\begin{gathered} \text { Related } \\ \text { function code } \\ \hline \end{gathered}$
$\begin{aligned} & \overline{0} \\ & \text { O} \\ & 0 \end{aligned}$	PID control	Control with PID regulator or dancer controlle,				$\begin{aligned} & \text { E61 to E63 } \\ & \text { J01 to J06 } \\ & \text { J10 to J19 } \end{aligned}$
		- Process command - Key operation (\triangle and keys) : 0 to 100% - Analog input (terminal 12, C1 (V2)) : 0 to $\pm 10 \mathrm{~V}$ DC/0 to $\pm 100 \%$ - Analog input (terminal C1) : 4 to 20 mA DC/0 to 100% - UP/DOWN (digital input) : 0 to 100% - Communication (RS-485, bus option) : 0 to 20000/0 to 100\%				
		- Feedback value - Analog input from terminal $12, \mathrm{C} 1$ (V2) : 0 to $\pm 10 \mathrm{~V} \mathrm{DC} / 0$ to $\pm 100 \%$ - Analog input (terminal C1) : 4 to 20 mA DC/0 to 100%				
		- Accessory functions - Alarm output (absolute value alarm, deviation alarm) - PID output limiter - Anti-reset wind-up function		- Normal operation/inverse operation - Integration reset/hold		
	Pick-up	Operation begins at a preset pick-up frequency to search for the motor speed to start an idling motor without stopping it.				H09, H13, H17
	Automatic deceleration	When the torque calculation value exceeds the limit level set for the inverter during deceleration, the output frequency is automatically controlled and the deceleration time automatically extends to avoid an $\overline{U U}$ trip.			Trip may occur due to load conditions.	H69, F08
	Deceleration characteristic	The motor loss increases during deceleration to reduce the load energy regenerating at the inverter to avoid an DU' trip upon mode selection.				H71
	Automatic energy-saving operation	The output voltage is controlled to minimize the total sum of the motor loss and inverter loss at a constant speed.				F37, F09
	Overload Prevention Control	The output frequency is automatically reduced to suppress the overload protection trip o inverter caused by an increase in the ambient temperature, operation frequency, motor load or the like.				H70
	Auto-tuning	The motor parameters are automatically tuned.				P04
	Cooling fan ON/OFF control	Detects inverter internal temperature and stops cooling fan when the temperature is low.			An external outputi is issued in a transistor output signal.	H06
	Secondary motor setting	- One inverter can be used to control two motors by switching (switching is not available while a motor is running). Base frequency, rated current, torque boost, electronic thermal, slip compensation can be set as data for the secondary motor - The second motor constants can be set in the inverter. (Auto-tuning possible)				
	Universal DI	The presence of digital signal in a device externally connected to the set terminal can be sent to the master controller.				
	Universal AO	The output from the master controller can be output from the terminal FM.				
	Speed control	The motor speed can be detected with the pulse encoder and speed can be controlled.			When the PG interface card (optional) Is installed.	
	Positioning control	Only one program can be executed by setting the number of pulses to the stop position and deceleration point.			When the PG interface card (optional) Is installed.	
	Rotation direction control	Select either of reverse prevention or forward rotation prevention.				
¢	Running/stopping	- Speed monitor, output current [A], output voltage [V], torque calculation value, input power [kW], PID reference value, PID feedback value, PID output, load factor, motor output, period for timer operation [s] -Select the speed monitor to be displayed from the following: Output frequency [Hz], Output frequency $1[\mathrm{~Hz}]$ (before slip compensation), Output frequency 2 (after slip compensation) [Hz], Motor speed (set value) [r/min], Motor speed [r/min], Load shaft speed (set value) [r/min], Load shaft speed (r/min), Line speed (set value), Line speed ($\mathrm{r} / \mathrm{min}$)				E43
	Life early warning	The life early warning of the main circuit capacitors, capacitors on the PC boards and the cooling fan can be displayed.			An external output is issued in a transistor output signal.	
	Cumulative run hours	The cumulative motor running hours, cumulative inverter running hours and cumulative watt-hours can be displayed.				
	$1 / \mathrm{O}$ check	Displays the input signal status of the inverter.				
	Power monitor	Displays input power (momentary), accumulated power, electricity cost (accumulated power x displayed coefficient).				
	Trip mode	Displays the cause of trip by codes. 				
	Running or trip mode	Trip history: Saves and displays the last 4 trip codes and their detailed description.				E52
	Overcurrent protection					
	Short circuit protection	The inverter is stopped upon an overcurrent caused by a short circuit in the output circuit.				
	Grounding fault protection	The inverter is stopped upon an overcurrent caused by a grounding fault in the output circuit.				
	Overvoltage protection	An excessive DC link circuit voltage is detected to stop the inverter.			3-phase 200V / 400V DC, Single-phase 200V/400V DC 3-phase $400 \mathrm{~V} / 800 \mathrm{~V}$ D	
	Undervoltage	Stops the inverter	ling voltage drop in DC link circ		3-phase 200V / 200V DC, Single-phase 200VI400V DC 3-phase 400V / 400V DC	F14
	Input phase loss	Stops or protects th	er against input phase loss.		The protective function can be canceled with function code 99.	H98
	Output phase loss	Detects breaks in in	ut wiring at the start of running a	during running, stopping the inverter output.	The protective function can be canceled with function code 99.	H98
	Overheating	The temperature of the hea	verere or that isidet the inverere unitis detected	stop the inverter, upon a failure or overlod of f the cooling fan.		H43
	Overload	The inverter is stopped upon the temperature of the heat sink of the inverter or the temperature of the switching element calculated from the output current.				
	듳 Electronic thermal	The inverter is stopped upon an electronic thermal function setting to protect the motor.			Thermal time constant can be adjusted (0.5 to $75.0 \mathrm{min}$.)	F10 to F12, P99
	\% PTC thermistor	A PTC thermistor input stops the inverter to protect the motor.				H26, H27
	年亳 Overload early warning	Warning signal can be output based on the set level before the inverter trips.				$\begin{aligned} & \text { F10, F12, E34, } \\ & \text { E35, P99 } \\ & \hline \end{aligned}$
	Stall prevention	The output trequency decreases upon an output curent exceeding the linit during acceleration or constiant speed operation, to avoid overcurrent trip.				H12
	Momentary power failure protection	- A protective function (inverter stoppage) is activated upon a momentary power failure for 15 msec or longer. - If restart upon momentary power failure is selected, the inverter restarts upon recovery of the voltage within the set time.				$\begin{aligned} & \hline \mathrm{H} 13 \text { to H16 } \\ & \text { F14 } \end{aligned}$
	Retry function	When the motor is tripped and stopped, this function automatically resets the tripping state and restarts operation.			Waiting time before resetting and the number of retry times can be set.	H04, H05
	Command loss detection	A loss (broken wire, etc.) of the frequency command is detected to output an alarm and continue operation at the preset frequency (set at a ratio to the frequency before detection).				E65
	Installation location	Shall be free from corrosive gases, flammable gases, oil mist, dusts, and direct sunlight. (Pollution degree 2 (IEC60664-1)). Indoor use only.				
	Ambient temperature	-10 to $+50^{\circ} \mathrm{C}$			$-101040^{\circ} \mathrm{C}$ when inverers are installed sidid by side without clearance.	
	Ambient humidity	5 to $95 \% \mathrm{RH}$ (without condensation)				
	Altitude	Altitude [m]	Output decrease		*If the altitude exceeds $2,000 \mathrm{~m}$, insulate	
		Lower than 1,000	None		the interface circuit from the main power supply to conform to the Low Voltage	
		1,001 to 2,000	Decreases			
		2,001 to 3,000	Decreases*			
	Vibration	3 mm (vibration width): 2 to less than $9 \mathrm{~Hz}, 9.8 \mathrm{~m} / \mathrm{s}^{2}: 9$ to less than $20 \mathrm{~Hz}, 2 \mathrm{~m} / \mathrm{s}^{2}: 20$ to less than $55 \mathrm{~Hz}, 1 \mathrm{~m} / \mathrm{s}^{2}: 55$ to less than 200 Hz				

External Dimensions

Olnverter main body (standard type)

Fig. a

Fig. c

Fig.b

Fig. d

Fig. f

Power supply voltage	Inverter type	Fig.	Dimension (mm)							
			W	W1	H	H1	D	D1	D2	C
Three-phase 200V	FRN0.1E1S-2■	a	80	67	120	110	92	82	10	5x6(elongated hole)
	FRN0.2E1S-2■						92			
	FRN0.4E1S-2■						107		25	
	FRN0.75E1S-2■						132		50	
	FRN1.5E1S-2■	b	110	97	130	118	150	86	64	5×7 (elongated hole)
	FRN2.2E1S-2■									
	FRN3.7E1S-2■	d	140	128	180	168	151	87	64	\$5
	FRN5.5E1S-2■	e	180	164	220	205	158	81	77	¢6
	FRN7.5E1S-2■									
	FRN11E1S-2■	f	220	196	260	238	195	98.5	96.5	¢10
	FRN15E1S-2■									
Three-phase 400V	FRN0.4E1S-4■	C	110	97	130	118	126	86	40	5×6 (elongated hole)
	FRN0.75E1S-4■						150		64	
	FRN1.5E1S-4■	b	110	97	130	118	150	86	64	5×7 (elongated hole)
	FRN2.2E1S-4■									
	FRN3.7E1S-4■	d	140	128	180	168	151	87	64	\$5
	FRN5.5E1S-4■	e	180	164	220	205	158	81	77	¢6
	FRN7.5E1S-4■									
	FRN11E1S-4	f	220	196	260	238	195	98.5	96.5	\$10
	FRN15E1S-4■									
Single-phase$200 \mathrm{~V}$	FRN0.1E1S-7!	a	80	67	120	110	92	102	10	5×6 (elongated hole)
	FRN0.2E1S-7■									
	FRN0.4E1S-7■						107		25	
	FRN1.5E1S-7■	b	110	97	130	118	150	86	64	5x7(elongated hole)
	FRN2.2E1S-7!	d	140	128	180	168	151	87	64	¢5

Note: For the inverter type FRN0.1E1S-2 \square, the symbol \square is replaced with either of the following alphabets.

- A(Asia), K(Koria, Taiwan), C(China), J(Japan)

OKeypad

Dimensions of panel cutting (viewed from " A ")

[^1]
External Dimensions

Olnverter main body (EMC filter built-in type)

Fig. g

Fig. i

Fig. I

Power supplyvoltage	Inverter type	Fig.	Dimension (mm)						
			W	H	H1	D	D1	D2	D3
Three-phase 200V	FRN0.1E1E-2■	g	80	120	170	112	102	10	21.2
	FRN0.2E1E-2■					112			
	FRN0.4E1E-2■					127		25	36.2
	FRN0.75E1E-2■					152		50	61.2
	FRN1.5E1E-2■	i	140	180	245	194	130	64	85.5
	FRN2.2E1E-2■								
	FRN3.7E1E-2■								
	FRN5.5E1E-2■	j	181.5	285	-	213	-	-	-
	FRN7.5E1E-2■								
	FRN11E1E-2■	k	220	357	-	260	-	-	-
	FRN15E1E-2■								
Three-phase 400V	FRN0.4E1E-4■	h	110	130	180	169	129	40	61.5
	FRN0.75E1E-4■					193		64	85.5
	FRN1.5E1E-4■	i	140	180	245	194	130	64	85.5
	FRN2.2E1E-4■								
	FRN3.7E1E-4■								
	FRN5.5E1E-4■	j	181.5	285	-	208	-	-	-
	FRN7.5E1E-4■	j					-		
	FRN11E1E-4■	1	220	332	-	250	-	-	-
	FRN15E1E-4■								
Single-phase 200V	FRN0.1E1E-7!	g	80	120	170	112	102	10	21.2
	FRN0.2E1E-7■								
	FRN0.4E1E-7■					127		25	36.2
	FRN0.75E1E-7!	h	110	130	180	150	110	40	55.2
	FRN1.5E1E-7■	i	140	180	245	194	130	64	85.5
	FRN2.2E1E-7■								

[^2]
Keypad Operations

Keypad switches and functions

LED monitor

When the motor is running or stopped:
The monitor displays speeds, such as output frequency, set frequency, motor speed and load shaft speed, output voltage, output current, and power consumption.

Unit display

The unit of the data displayed at the LED monitor is indicated. Use the key to switch the displayed data.

Operation mode display

Alarm mode:

The monitor shows the alarm description with a fault code.

Program/Reset key

Used to change the mode.
Programming mode:
Used to shift the digit (cursor movement) to set data.
Alarm mode:
Resets trip prevention mode

During keypad operation:

 or \square (keypad operation), the green KEYPAD CONTROL LED lights up.

Run key

While the motor is stopped:

Used to start the operation.
This key is invalid if the function code F DOD (operation by external signals) is
set to \qquad

During operation:

The green RUN LED lights up

Stop key

Used to stop the operation.
During operation:
This key is invalid if the function code (operation by external signals) is set to \qquad
\square
\qquad $\square \square$ or \square.

Monitor display and key operation The keypad modes are classified into the following 3 modes.

	Operatio		Programming mode		Running mode		Alarm mode
Monitor, keys			STOP	RUN	STOP	RUN	
	F1, 10010	Function	Displays the function	code and data.	Displays the output frequency, speed, power consumption, ou	set frequency, loaded motor utput current, and output voltage.	Displays the alarm description and alarm history.
		Display	Lighting		Blinking	Lighting	Blinking/Lighting
		Function	Indicates that the prog	ram mode is selected.	Displays the units of frequ power consumption, and	uency, output current, rotation speed.	None
	$\left[\begin{array}{c} \square \mathrm{Hz} \\ {\left[\begin{array}{l} \square / \mathrm{min} \\ \mathrm{rm} \\ \square \mathrm{~m} / \mathrm{min} \\ \square \mathrm{~kW} \end{array}\right]} \end{array}\right] \text { PRG.MODE }$	Display		G.MODE ON			OFF
	KEYPAD	Function		Operation sele	n (keypad operation/ter	minal operation) is disp	
	CONTROL	Display			Lit in keypad operatio	on mode	
		Function	Indicies absence ofoperaion cormmands.	Indicies presenceo of pepation coommands.	Indicates absence of operation commands.	Indicates presence of operation commands.	Indicates that the operation is trip-stopped.
	\square RUN	Display	\square RUN unlit	\square RUN lit	\square RUN unlit	\square RUN lit	If an alarm occurs during operation, the lamp is unlit during keypad operation and lit during terminal block operation.
			Switches to running	ode	Switches to programming	mode	
			Digit shift (cursor mov	ment) in data setting			or running mode.
	FUNC	Function	Determines the function updates data.	n code, stores and	Switches the LED monitor	display.	Displays the operation information.
¢		Function	Increases/decreases and data.	the function code	Increases/decreases the and other settings.	frequency, motor speed	Displays the alarm history.
	RUN	Function	Invalid		Starts running (switches to running mode (RUN)).	Invalid	Invalid
	STOP	Function	Invalid	Deceleration stop (switches to programming mode (STOP)).	Invalid	Deceleration stop (switches to running mode (STOP)).	Invalid

This keypad supports the full menu mode that allows you to set or display the following information. Indication and setting change of changed function code, drive monitor, I/O check, maintenance information, and alarm information. For the actual operation methods, refer to the FRENIC-Multi Instruction Manual or User's Manual.

Basic Wiring Diagram

Wiring diagram

The following diagram is for reference only. For detailed wiring diagrams, refer to the instruction manual.
Keypad operation

Operation by external signal inputs

■Run/Stop operation and frequency setting through external signals [Wiring procedure]
(1) Wire both the inverter main power circuit and control circuit.
(2) Set i (external signal) at function code $F 02$. Next, set i (voltage input (terminal 12) (0 to +10 V DC)), $己$? (current input (terminal C1) (+4 to $20 \mathrm{mADC})$), or other value at function code $F O$ i.

[Operation method]

(1) Run/Stop: Operate the inverter across terminals FDW and CM shortcircuited, and stop with open terminals.
(2) Frequency setting: Voltage input (0 to +10 V DC), current input (+4 to $20 \mathrm{~mA} \mathrm{DC})$
Note1: When connecting a DC REACTOR (DCR option), remove the jumper bar from across the terminals $[P 1]$ and $[P(+)]$.
Note2: Install a recommended molded-case circuit breaker (MCCB) or an earth-leakage circuit-breaker (ELCB) (with an overcurrent protection function) in the primary circuit of the inverter to protect wiring. At this time, ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.
Note3: Install a magnetic contactor (MC) for each inverter to separate the inverter from the power supply, apart from the MCCB or ELCB, when necessary.
Connect a surge killer in parallel when installing a coil such as the MC or solenoid near the inverter.
Note4: (THR) function can be used by assigning code "9" (external alarm) to any of the terminals X1 to X5, FWD or REV (function code; E01 to E05, E98, or E99).
Note5: Frequency can be set by connecting a frequency-setting device (external potentiometer) between the terminals 11, 12 and 13 instead of inputting a voltage signal (0 to $+10 \mathrm{~V} D \mathrm{DC}, 0$ to +5 V DC or +1 to +5 V DC) between the terminals 12 and 11 .
Note 6: For the control signal wires, use shielded or twisted wires. Ground the shielded wires. To prevent malfunction due to noise, keep the control circuit wiring away from the main circuit wiring as far as possible (recommended: 10 cm or more). Never install them in the same wire duct.
When crossing the control circuit wiring with the main circuit wiring, set them at right angles.

Terminal Functions

Terminal Functions

Terminal Functions

	Symbol	Terminal name	Functions	Remark	Related function code
	FM (FMA)	Analog monitor	A monitor signal of analog DC voltage between 0 to +10 V DC) can be output for the item selected from the following: - Output frequency 1 (before slip compensation) • Output frequency 2 (after slip compensation) • Output current • Output voltage • Output torque • Load factor. \bullet Power consumption • PID feedback value (PV) • DC link circuit voltage • Universal AO. • Motor output • Analog output test. • PID command (SV) • PID output (MV)	Connectable impedance (Minimum impedance: 5 kW In the (0 to +10 V DC) In case of voltage output, up to two analog voltmeters (0 to 10 VDC , input impedance: 10kW) can be connected. Gain adjustment range: 0 to 300\%	$\begin{aligned} & \text { F29 to } \\ & \text { F31 } \end{aligned}$
	(FMP)	Pulse monitor	One of the following items can be output in a pulse frequency. - Output frequency 1 (before slip compensation) • Output frequency 2 (after slip compensation) • Output current • Output voltage • Output torque • Load factor.o Power consumption • PID feedback value (PV) • DC link circuit voltage • Universal AO • Motor output • Analog output test • PID command (SV) • PID output (MV)	Up to two analog voltmeters (0 to10V DC, input impedance: $10 \mathrm{k} \Omega$) can be connected. (Driven at average voltage)	$\begin{aligned} & \text { F29, } \\ & \text { F31, } \\ & \text { F33, } \end{aligned}$
	(PLC)	Transistor output power	Power supply for a transistor output load. (24V DC 50mA DC Max)	- Short circuit across terminals CM and CMY to use - Same terminal as digital input PLC terminal	E20
	Y1	Transistor output 1	The following functions can be set at terminals Y 1 or Y 2 for signal output. - The setting of "short circuit upon active signal output" or "open upon active signal output" is possible. - Sink/source support (switching unnecessary)	Max. voltage: 27V DC Max. current: 50 mA Leak current: 0.1 mA max. ON voltage: within 2 V (at 50 mA)	$\begin{array}{\|l\|l\|} \hline \text { E21 } \\ \hline \text { E22 } \\ \hline \end{array}$
	Y2	Transistor output 2			
	(RUN)	Inverter running	An ON signal is output when the inverter runs at higher than the starting frequency.		
	(RUN2)	Inverter output on	A signal is issued when the inverter runs at smaller than the starting frequency or when DC braking is in action.		
	(FAR)	Speed/freq- arrival	An active signal is issued when the output frequency reaches the set frequency.	Detection width: 0 to $10.0[\mathrm{~Hz}]$	E30
	(FDT)	Speed/freq detection	An ON signal is output at output frequencies above a preset detection level. The signal is deactivated if the output frequency falls below the detection level.	Operation level: 0.0 to $400.0[\mathrm{~Hz}]$ Hysteresis width: 0.0 to $400.0[\mathrm{~Hz}]$	$\begin{aligned} & \text { E31 } \\ & \text { E32 } \end{aligned}$
	(LV)	Undervoltage detection	The signal is output when the inverter stops because of undervoltage.		
	(B/D)	Torque polarity detection	The OFF signal is output when the inverter is running in drive mode and the ON signal is output in the braking mode or stopped state.		
	(10L)	Inverter output limit (limit on current)	The signal is output when the inverter is limiting the current.		F43, F44
	(IPF)	Auto-restarting	The signal is output during auto restart operation (after momentary power failure and until completion of restart).		F14
	(OL)	Overload early warning (motor)	The signal is output when the electronic thermal relay value is higher than the preset alarm level.		F10 to F12
$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	(RDY)	Operation ready output	A signal is issued if preparation for inverter operation is completed.		
	(SWM2)	Motor 2 switching	The motor switching signal (M2/M1) is input and the ON signal is output when the motor 2 is selected.		
픈	(TRY)	Retry in action	The signal is output during an active retry.		H04, H05
	(OH)	Heat sink overheat early warning	An early warning signal is issued before the heat sink trips due to overheat.		
	(FAR2)	Frequency arrival 2	The signal is output when the time set in E29 elapses after the frequency arrival signal (FAR) is output.		E29
	(IOL2)	Inverter output limit	If more than 20 ms elapse while one of the following operations is operating: current limiter for the inverter, automatic deceleration operation or torque limiter.		$\begin{aligned} & \text { F41 to F44 } \\ & \mathrm{H} 69 \end{aligned}$
	(LIFE)	Lifetime alarm	Outputs alarm signal according to the preset lifetime level.		H42,443, H98
	(REF OFF)	Command loss detection	A loss of the frequency command is detected.		E65
	(OLP)	Overload preventive control	The signal is output when the overload control is activated.		H70
	(ID)	Current detection	The signal is output when a current larger than the set value has been detected for the timer-set time.		E34, E35
	(ID2)	Current detection 2	The signal is output when a current larger than the set value 2 has been detected for the timer-set time.		E37, E38
	(PID-ALM)	PID alarm output	An absolute value alarm or deviation alarm under PID control is issued as a signal.		J11 to J13
	(BRKS)	Brake signal	The signal for enabling or releasing the brake is output.		J68 to J72
	(ALM)	Alarm relay output (for any fault)	An alarm relay output (for any fault) signal is issued as a transistor output signal.		
	CMY	Transistor output common	Common terminal for transistor output	The terminal is isolated from terminals 11 and CM .	
	30A,30B,30C	Alarm relay output (for any fault)	- A no-voltage contact signal (1c) is issued when the inverter is stopped due to an alarm. - Multi-purpose relay output; signals similar to above-mentioned signals Y1 to Y2 can be selected. - An alarm output is issued upon either excitation or no excitation according to selection.	Contact capacity: 250V AC, 0.3A, $\cos \phi=0.3,+48 \mathrm{~V}$ DC, 0.5 A	E27
	-	RJ-45 connector for connection of keypad	One of the following protocols can be selected. - Protocol exclusively for keypad (default selection) - Modbus RTU - Fuji's special inverter protocol - SX protocol for PC loader	Power $(+5 \mathrm{~V})$ is supplied to the keypad.	$\begin{array}{\|l} \text { H30 } \\ \text { y01 to y20 } \\ \text { y98,999 } \end{array}$

Terminal Functions

ITerminal Arrangement

OMain circuit terminals

Power source	Applied motor [kW]	Inverter type	Fig.
Threephase 200V	0.1	FRN0.1E1 \square-2 \square	Fig. A
	0.2	FRN0.2E1 \square-2 \square	
	0.4	FRN0.4E1 \square-2 \square	
	0.75	FRN0.75E1 \square-2	
	1.5	FRN1.5E1 \square-2	Fig. B
	2.2	FRN2.2E1 \square-2 \square	
	3.7	FRN3.7E1 \square-2 \square	
	5.5	FRN5.5E1 \square-2 \square	Fig. C
	7.5	FRN7.5E1 \square-2 \square	
	11	FRN11E1 \square-2 \square	
	15	FRN15E1 \square-2 \square	
Threephase 400 V	0.4	FRN0.4E1 \square-4 \square	Fig. B
	0.75	FRN0.75E1 \square-4	
	1.5	FRN1.5E1 \square-4	
	2.2	FRN2.2E1 \square-4 \square	
	3.7	FRN3.7E1 \square-4 \square	
	5.5	FRN5.5E1 \square-4 \square	Fig. C
	7.5	FRN7.5E1 \square-4 \square	
	11	FRN11E1 \square-4	
	15	FRN15E1 \square-4 \square	
Singlephase 200V	0.1	FRN0.1E1 \square-7 \square	Fig. D
	0.2	FRN0.2E1 \square-7 \square	
	0.4	FRN0.4E1 \square-7 \square	
	0.75	FRN0.75E1 \square-7	
	1.5	FRN1.5E1 \square-7 \square	Fig. E
	2.2	FRN2.2E1 \square-7 \square	

Note : For the inverter type FRN0.1E1 \square-2 \square, the symbol \square and \square is replaced with either of the following alphabets
$\square \mathrm{S}$ (standard type), E (EMC filter built-in type)

- A (Asia), K (Koria, Taiwan), C (china), J (Japan)

Fig. A

Fig. B

Fig. C

Fig. D

Fig. E

-Control circuit terminals (common to all the inverter models)

CMY	Y1	Y2	C1	11	FM	CM	X1	X2	X3	X4	X5	PLC

11	12	13	CM	FWD	REV

30 A	30 B	30 C

Protective Functions

Protective Functions	Description			LED indication	Alarm output （30A，B，C）Note）	Related function code
Overcurrent protection	The inverter is stopped for protection against overcurrent．		During acceleration	Di	\bigcirc	
Short circuit protection	The inverter is stopped for protection against overcurrent caused by a short circuit in the output circuit．		During deceleration			
Grounding fault protection	The inverter is stopped upon start－up for protection against overcurrent caused by a grounding fault in the output circuit． If the power supply is turned on with the grounding fault，the inverter and the controlled equipment may not be protected．		During constant speed operation	BL 3		
Overvoltage protection	An excessive voltage（3－phase and Single－phase 200 V series： 400 V DC， 3 －phase 400 V series： 800 V DC） in the DC link circuit is detected and the inverter is stopped．If an excessive voltage is applied by mistake， the protection cannot be guaranteed．		During acceleration During deceleration During constant speed operation	$\begin{aligned} & 810 \\ & 01010 \\ & 0 \end{aligned}$	\bigcirc	
Undervoltage protection	The voltage drop（3－phase 200 V series： 200 V DC，3－phase 400 V series： 400 V DC ）in the DC link circuit is detected to stop the inverter． However，when＂F14： 3,4 or 5 ＂is selected，an alarm is not issued even upon a voltage drop in the DC link circuit．			Lí	\triangle	F14
Input phase loss protection	The input phase loss is detected to shut off the inverter output．This function protects the inverter from being damaged by adding extreme stress caused by a power phase loss or imbalance between phases．When the load to be connected is small or DC REACTOR is connected a phase loss is not detected．			1 L	\bigcirc	H98
Output phase loss protection	Detects breaks in inverter output wiring at the start of operation and during running，to shut off the inverter output．			BP	0	H98
Overheating protection	Stops the inverter output upon detecting excess heat sink temperature in case of cooling fan failure or overload．			BHi	\bigcirc	H43，H98
	Discharging and inverter operation are stopped due to overheating of an external braking resistor． ＊Function codes must be set corresponding to the braking resistor．			diti	\bigcirc	
Overload protection	The temperature inside the IGBT is calculated from the detection of output current and internal temperature，to shut off the inverter output．			BLU	0	
External alarm input	With the digital input signal（THR）opened，the inverter is stopped with an alarm．			ロッコ	\bigcirc	$\begin{aligned} & \text { E01 to E05 } \\ & \text { E98, E99 } \end{aligned}$
Electronic	The inverter is stopped with an electronic thermal function set to protect the motor．			IT	0	F10，A06
	－The standard motor is protected at all the frequencies． －The inverter motor is protected at all the frequencies． ＊The operation level and thermal time constant can be set．			2		F11，F12，A07，A08
O2 PTC thermistor	A PTC thermistor input stops the inverter to protect the motor．			ロН゙	O	H26，H27
$\frac{\overline{0}}{0}$	－The PTC thermistor is connected between terminals C 1 and 11 to set switches and function codes on the control PC board．					
$\sum \begin{aligned} & \text { Overload early } \\ & \text { warning }\end{aligned}$	Warning signal is output at the predetermined level before stopping the inverter with the electronic thermal function to protect the motor．			－	－	E34，E35
Stall prevention	This is protected when the instantaneous overcurrent limit works．			－	－	H12
	－Instantaneous overcurrent limit：Operates when the inverter output current goes beyond the instantaneous overcurrent limiting level， and avoids tripping（during acceleration and constant speed operation）．					
Alarm relay output （for any fault）	The relay signal is output when the inverter stops upon an alarm． ＜Alarm reset＞ The key or digital input signal（RST）is used to reset the alarm stop state． ＜Storage of alarm history and detailed data＞ Up to the last 4 alarms can be stored and displayed．			－	0	$\begin{aligned} & \text { E20,E21,E27 } \\ & \text { E01 to E05 } \\ & \text { E98,E99 } \end{aligned}$
Memory error	Data is checked upon power－on and data writing to detect any fault in the memory and to stop the inverter if any．			Er i	\bigcirc	
Keypad communication error	The keypad（standard）or multi－function keypad（optional）is used to detect a communication fault between the keypad and inverter main body during operation and to stop the inverter．			Ere	\bigcirc	F02
CPU error	Detects a CPU error or LSI error caused by noise．			Er3	0	
Opition communication error	When each option card is used，a fault of communication with the inverter main body is detected to stop the inverter．			$E r 4$	－	
Option error	When each option card is used，the option card detects a fault to stop the inverter．			ErS	－	
Operation error	STOP key priority	Pressing the key on the keypad or entering the digital input signal will forcibly decelerate and stop the motor even if the operation command through signal input or communication is selected．		Erb	0	H96
	Start check：	Start check：If the operation command is entered in the following cases，$\Sigma_{\square}-\bar{\square}$ will be displayed on the LED monitor to prohibit operation． －Power－on －Alarm reset（ key ON or alarm（error）reset［RST］is reset．） －The link operation selection＂LE＂is used to switch operation．				
Tuning error	When tuning failure，interruption，or any fault as a result of turning is detected while tuning for motor constant．			Er 7	0	P04
RS－485 communication error	When the connection port of the keypad connected via RS485 communication port to detect a communication error，the inverter is stopped and displays an error．			ErB	\bigcirc	
Dala save eroro upon Undervolage	When the undervoltage protection works，an error is displayed if data cannot be stored．			Erir	0	
RS－485 communication error（optional）	When an optional RS－485 communication card is used to configure the network，a fault of communication with the inverter main body is detected to stop the inverter．			ErP	\bigcirc	
Retry	When the inverter is tripped and stopped，this function automatically resets the tripping state and restarts operation． （The number of retries and the length of wait before resetting can be set．）			－	－	H04，H05
Surge protection	The inverter is protected against surge voltage intruding between the main circuit power line and ground．			－	－	
Command loss detection	A loss（broken wire，etc．）of the frequency command is detected to output an alarm and continue operation at the preset frequency （set at a ratio to the frequency before detection）．			－	－	E65
PG disconnection	An error displays when the signal line for PG is disconnected while the PG feedback card is installed．			PI）	\bigcirc	
Momentary power failure protection	－A protective function（inverter stoppage）is activated upon a momentary power failure for 15 msec or longer． －If restart upon momentary power failure is selected，the inverter restarts upon recovery of the voltage within the set time．			－	－	$\begin{aligned} & \text { F14 } \\ & \text { H13 to H16 } \end{aligned}$
Overload avoidance control	The inverter output frequency is reduced to avoid tripping before heat sink overheating or tripping due to an overload （alarm indication：RIH i or RIL Li ．			－	－	H70
Hardware error	The inverter is stopped when poor connection between the control board and power source board or interface board，or shor－circuit between terminals between 13 and 11 is detected．			ErH	\bigcirc	
Simulation error	Simulated alarm is output to check the fault sequence．			Err	0	H45

Note：The item indicated with Δ in the alarm output（30A，B，C）column may not be issued according to some function code settings．

Function Settings

Function Settings

OF codes: Fundamental Functions

Func. Code	Name	Data setting range	Min.	Unit	$\begin{aligned} & \text { Data } \\ & \text { copy }^{* 2} \end{aligned}$	Default setting
FOO	Data Protection	0: Disable both data protection and digital reference protection 1: Enable data protection and disable digital reference protection 2: Disable data protection and enable digital reference protection 3: Enable both data protection and digital reference protection	-	-	Y	0
FOi	Frequency Command 1	$0: \bigcirc / \bigcirc$ keys on keypad 1: Voltage input to terminal [12] (-10 to +10 VDC) 2: Current input to terminal [C1] (C1 function) (4 to 20 mADC) 3: Sum of voltage and current inputs to terminals [12] and [C1] (C1 function) 5: Voltage input to terminal [C1] (V2 function) (0 to 10 VDC) 7: Terminal command UP /DOWN control 11: Digital input (option) 12: Pulse input (option)	-	-	Y	0
FO2	Operation Method	0: RUN/STOP keys on keypad (Motor rotational direction specified by terminal command FWD/REV) 1: Terminal command FWD or REV 2: RUN/STOP keys on keypad (forward) 3: RUN/STOP keys on keypad (reverse)	-	-	Y	2
F03	Maximum Frequency 1	25.0 to 400.0	0.1	Hz	Y	60.0
F04	Base Frequency 1	25.0 to 400.0	0.1	Hz	Y	60.0
F05	Rated Voltage at Base Frequency 1	0: Output a voltage in proportion to input voltage 80 to 240: Output an AVR-controlled voltage (for 200 V class series) 160 to 500: Output an AVR-controlled voltage (for 400 V class series)	1	V	Y2	220
F06	Maximum Output Voltage 1	80 to 240: Output an AVR-controlled voltage (for 200 V class series) 160 to 500: Output an AVR-controlled voltage (for 400 V class series)	1	V	Y2	380
F07	Acceleration Time 1	0.00 to 3600 Note: Entering 0.00 cancels the acceleration time, requiring external soft-start.	0.01	s	Y	6.00
F08	Deceleration Time 1	0.00 to 3600 Note: Entering 0.00 cancels the deceleration time, requiring external soft-start.	0.01	s	Y	6.00
F09	Torque Boost 1	0.0 to 20.0 (percentage with respect to "F05: Rated Voltage at Base Frequency 1 ") Note: This setting takes effect when $\mathrm{F} 37=0,1,3$, or 4 .	0.1	\%	Y	Depending on the inverter capacity
F i	Electronic Thermal Overload Protection for Motor 1 (Select motor characteristics)	1: For a general-purpose motor with shaft-driven cooling fan 2: For an inverter-driven motor, non-ventilated motor, or motor with separately powered cooling fan	-	-	Y	1
Fit	(Overload detection level)	0.00: Disable 1 to 135% of the rated current (allowable continuous drive current) of the motor	0.01	A	Y1Y2	10\%\% ofte modorited areent
Fit	(Thermal time constant)	0.5 to 75.0	0.1	min	Y	5.0
F 14	Restart Mode after Momentary Power Failure (Mode selection)	0 : Disable restart (Trip immediately) 1: Disable restart (Trip after a recovery from power failure) 4: Enable restart (Restart at the frequency at which the power failure occurred, for general loads) 5: Enable restart (Restart at the starting frequency, for low-inertia load)	-	-	Y	1
F is	Frequency Limiter (High)	0.0 to 400.0	0.1	Hz	Y	70.0
Fis	(Low)	0.0 to 400.0	0.1	Hz	Y	0.0
F is	Bias (Frequency command 1)	-100.00 to 100.00*1	0.01	\%	Y	0.00
F20	DC (Braking starting frequency)	0.0 to 60.0	0.1	Hz	Y	0.0
F2	Braking 1 (Braking level)	0 to 100	1	\%	Y	0
F22	(Braking time)	0.00 : Disable 0.01 to 30.00	0.01	s	Y	0.00
F23	Starting Frequency 1	0.1 to 60.0	0.1	Hz	Y	0.5
$F 24$	(Holding time)	0.01 to 10.00	0.01	s	Y	0.00
F25	Stop Frequency	0.1 to 60.0	0.1	Hz	Y	0.2
F25	Motor Sound (Carrier frequency)	0.75 to 15	1	kHz	Y	2
F27	(Tone)	$\begin{aligned} & 0: \text { Level } 0 \text { (Inactive) } \\ & 1 \text { : Level } 1 \\ & 2: \text { Level } 2 \\ & 3: \text { Level } 3 \\ & \hline \end{aligned}$	-	-	Y	0
F29	Analog Output [FM] (Mode selection)	0 : Output in voltage (0 to 10 VDC) [FMA] 2 : Output in pulse (0 to 6000p/s) [FMP]	-	-	Y	0
F30	(Voltage adjustment)	0 to 300 [FMA]	1	\%	Y	100
F3i	(Function)	Select a function to be monitored from the followings. 0 : Output frequency 1 (before slip compensation) 1: Output frequency 2 (after slip compensation) 2: Output current 3: Output voltage 4: Output torque 5: Load factor 6: Input power 7: PID feedback amount (PV) 8: PG feedback value 9: DC link bus voltage 10: Universal AO 3: Motor output 14: Calibration 15: PID command (SV) 16: PID output (MV)	-	-	Y	0
F33	(Pulse rate)	25 to 6000 (FMP, Pulse rate at 100\% output)	1	p/s	Y	1440
F37	Load Selection/ Auto Torque Boost / Auto Energy Saving Operation 1	0 : Variable torque load 1: Constant torque load 2: Auto-torque boost 3: Auto-energy saving operation (Variable torque load during ACC/DEC) 4: Auto-energy saving operation (Constant torque load during ACC/DEC) 5: Auto-energy saving operation (Auto-torque boost during ACC/DEC)	-	-	Y	1
F39	Stop Frequency (Holding Time)	0.00 to 10.00	0.01	S	Y	0.00
F40	Torque (Limiting Level for driving)	20 to 200999 : Disable	1	\%	Y	999
F4	Limiter 1 (Limiting Level for braking)	20 to 200999 : Disable	1	\%	Y	999
F42	Control Mode Selection 1	0: V/f control with slip compensation inactive 1: Dynamic torque vector control 2: V/f control with slip compensation active 3: V/f control with PG 4: Dynamic torque vector control with PG	-	-	Y	0

Func. Code	Name	Data setting range	Min.	Unit	$\begin{gathered} \text { Data } \\ \text { copy } \end{gathered}$	Default setting
F43	Current Limiter (Mode selection)	0: Disable (No current limiter works.) 1: Enable at constant speed (Disable during ACC/DEC) 2: Enable during $\mathrm{ACC} /$ constant speed operation	-	-	Y	2
F44	(Level)	20 to 200 (The data is interpreted as the rated output current of the inverter for 100%.)	1	\%	Y	180
F50	Electronic Thermal (Discharging capability) Overload Protection for braking resistor (Allowable average loss)	$\begin{aligned} & 1 \text { to } 900 \text { 999: Disable } \\ & \text { 0: Reserved } \end{aligned}$	1	kWs	Y	999
F5 i		0.001 to 50.000 0.000: Reserved	0.001	kW	Y	0.000

OE codes: Extension Terminal Functions

[^3]Y2: Will not be copied if the rated input voltage differs from the source inverter. N : Will not be copied.
*3 Reserved for the maker. Do not set any data
<Changing, validating, and saving function code data when the motor is running> \square : Impossible, \square : Possible (Change data with \triangle keys and then save/validate it with - key), \square : Possible (Change and validate data with keys and then save it with key)

Functions Settings

Functions Settings
OE codes: Extension Terminal Functions

OE codes: Extension Terminal Functions

Func. Code	Name	Data setting range	Min.	Unit	$\begin{array}{c\|} \hline \text { Data } \\ \text { copy } 2 \end{array}$	Default setting
		$42(1042)$: Position control limit switch [LS] $43(1043)$: Position control start/reset command $[$ S/R] $44(1044)$ Serial pulse Receive mode [SPRM] $45(1045)$: Position Control return mode [RTN] $46(1046)$ Overload stopping effective command [OLS] 98 : Run forward [FWD] 99 : Run reverse [REV] Setting the value of 1000s in parentheses () shown above assigns a negative logic input to a terminal. Note: In the case of THR and STOP, data (1009) and (1030) are for normal logic, and " 9 " and " 30 are for negative logic, respectively.				

OC codes: Control Functions

Func. Code	Name	Data setting range	Min.	Unit	Data copy*2	Default setting
[口 i	Jump Frequency 1 2 3 (Hysteresis width)	0.0 to 400.0	0.1	Hz	Y	0.00
[02					Y	0.00
$[03$					Y	0.00
$\underline{24}$		0.0 to 30.0	0.1	Hz	Y	3.0
$\underline{05}$	Multi-Frequency $\begin{array}{cr}1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15\end{array}$	0.00 to 400.00	0.01	Hz	Y	0.00
$\underline{C 06}$					Y	0.00
$\underline{27}$					Y	0.00
[08					Y	0.00
[83					Y	0.00
[10]					Y	0.00
[1i					Y	0.00
$[12$					Y	0.00
$[13$					Y	0.00
$[14$					Y	0.00
[15					Y	0.00
[is					Y	0.00
$[17$					Y	0.00
[18					Y	0.00
[19					Y	0.00
[2]	Jogging Frequency	0.00 to 400.00	0.01	Hz	Y	0.00
[2;	Timer Operation	0 : Disable 1 : Enable	-	-	Y	0
$[30$	Frequency Command 2	0 : へ / V keys on keypad 1: Voltage input to terminal [12] (-10 to +10 VDC) 2: Current input to terminal [C1] (C1 function) (4 to 20 mADC) 3: Sum of voltage and current inputs to terminals [12] and [C1] (C1 function) 5: Voltage input to terminal [C1] (V2 function) (0 to 10 VDC) 7: Terminal command UP / DOWN control 11: Didital input (option) 12: Pulse input (option)	${ }^{-}$	${ }_{-}$	Y	2
[31	Analog Input Adjustment (offset)	-5.0 to 5.0	0.1	\%	Y	0.0
$[3]$	for [12] (Gain)	0.00 to 200.00 *1	0.01	\%	Y	100.0
$[33]$	(Filter time constant)	0.00 to 5.00	0.01	S	Y	0.05
[34	(Gain base point)	0.00 to 100.00*1	0.01	\%	Y	100.0
$[35$	(Polarity)	0 : Bipolar 1 : Unipolar	-	-	Y	1
$[36$		-5.0 to 5.0	0.1	\%	Y	0.0
$[3]$	for [C1] (C1 function) (Gain)	0.00 to $200.00 * 1$	0.01	\%	Y	100.0
[38	(Filter time constant)	0.00 to 5.00	0.01	S	Y	0.05
[39	(Gain base point)	0.00 to $100.00 * 1$	0.01	\%	Y	100.0
[41	Analog Input Adjustment (offset)	-5.0 to 5.0	0.1	\%	Y	0.0
$[42]$	for [C1] (V2 function) (Gain)	0.00 to 200.00 *1	0.01	\%	Y	100.0
$[4]$	(Filter time constant)	0.00 to 5.00	0.01	S	Y	0.05
[44]	(Gain base point)	0.00 to $100.00 * 1$	0.01	\%	Y	100.0
550	Bias (Frequency command 1) (Bias base point)	0.00 to 100.00 *1	0.01	\%	Y	0.00
[51	Bias (PID command 1) (Bias value)	-100.00 to $100.00{ }^{* 1}$	0.01	\%	Y	0.00
[52]	(Bias base point)	0.00 to $100.00{ }^{* 1}$	0.01	\%	Y	0.00
[53]	Selection of Normallhwerse Operation (Frequency command 1)	0 : Normal operation 1 : Inverse operation	-	-	Y	0

*1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
(Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows
"1" for -200 to $-100, ~ " 0.1$ " for -99.9 to $-10.0, ~ " 0.01 "$ for -9.99 to $-0.01, ~ " 0.01$ " for 0.00 to 99.99 ,
and 0.1 for 100.0 to 200.0
*2 Symbols in the "Data copy" column
Y: Will be copied unconditionally.
Y1: Will not be copied if the rated capacity differs from the source inverter.
Y2: Will not be copied if the rated input voltage differs from the source inverter.
N : Will not be copied.
*3 Reserved for the maker. Do not set any data
*4 Use these functions by connection with the multi-tasking keypad (optional). <Changing, validating, and saving function code data when the motor is running> \square : Impossible, \square : Possible (Change data with \triangle keys and then save/validate it with ${ }^{-}$key), \square : Possible (Change and validate data with
keys and then save it with keys and then save it with - key)

Functions Settings

Functions Settings

oP codes: Motor Parameters

Func. Code	Name	Data setting range	Min.	Unit	$\begin{array}{\|c\|} \hline \text { Data } \\ \text { copy }{ }^{2} \end{array}$	Default setting
PDI	Motor 1 (No. of poles) (Rated capacity) (Rated current) (Auto-tuning)	2 to 22	2	Pole	Y1Y2	4
P02		0.01 to 30.00 (where, P99 data is 0,3 , or 4.)	0.01	kW	Y1Y2	Rated capacity of motor
		0.01 to 30.00 (where, P99 data is 1.)	0.01	HP		
903		0.00 to 100.0	0.01	A	Y1Y2	
P04		0 : Disable 1: Enable (Tune \%R1 and \%X while the motor is stopped.) 2: Enable (Tune \%R1, \% X and rated slip while the motor is stopped, and no-load current while running.)	-	-	N	0
P05	(Online tuning)	0 : Disable 1 : Enable	-	-	Y	0
P05	(No-load current)	0.00 to 50.00	0.01	A	Y1Y2	
P07 7	(\%R1)	0.00 to 50.00	0.01	\%	Y1Y2	
P08	(\%X)	0.00 to 50.00	0.01	\%	Y1Y2	
P09	(Slip compensation gain for driving)	0.0 to 200.0	0.01	\%	Y	100.0
P in	(Slip compensation response time)	0.00 to 10.00	0.01	s	Y1Y2	0.50
Pil	(Slip compensation gain for braking)	0.0 to 200.0	0.01	\%	Y	100.0
Piz	(Rated slip frequency)	0.00 to 15.00	0.01	Hz	Y1Y2	
999	Motor 1 Selection	0: Motor characteristics 0 (Fuji standard motors, 8 -series) 1: Motor characteristics 1 (HP rating motors) 3: Motor characteristics 3 (Fuji standard motors, 6-series) 4: Other motors	-	-	Y1Y2	0

OH codes: High Performance Functions

Func. Code	Name	Data setting range	Min.	Unit	$\begin{gathered} \hline \text { Data } \\ \text { copy } 2 \end{gathered}$	Default setting
403	Data Initialization	0: Disable initialization 1: Initialize all function code data to the factory defaults 2: Initialize motor 1 parameters 3: Initialize motor 2 parameters	-	-	N	0
404	Auto-reset (Times)	0 : Disable 1 to 10	1	Times	Y	0
405	(Reset interval)	0.5 to 20.0	0.1	s	Y	5.0
406	Cooling Fan ON/OFF Control	0 : Disable (Always in operation) 1: Enable (ON/OFF controllable)	-	-	Y	0
407	Acceleration/Deceleration Pattern	0: Linear 1: S-curve (Weak) 2: S-curve (Strong) 3: Curvilinear	-	-	Y	0
408	Limiting the direction of the motor rotation	0: Disable 1: Enable (Reverse rotation inhibited) 2: Enable (Forward rotation inhibited)	-	-	Y	0
409	Starting Mode (Auto search)	0 : Disable 1: Enable (At restart after momentary power failure) 2: Enable (At restart after momentary power failure and at normal start)	-	-	Y	0
Hil	Deceleration Mode	0 : Normal deceleration 1: Coast-to-stop	-	-	Y	0
412	Instantaneous Overcurrent Limiting (Mode selection)	0 : Disable 1 : Enable	-	-	Y	1
Hi3	RestartMode ater Momentay Power Failure (Restart time) (Frequency fall rate) (Allowable momentary power failure time)	0.1 to 10.0	0.1	s	Y1Y2	Dependingonite inveterapacity
H14		0.00 : FSelected deceleration time 0.01 to 100.00 999: Follow the current limit command	0.01	Hz/s	Y	999
Hi5		0.0 to 30.0999 : Automatically determined by inverter	0.1	s	Y	999
H25	Thermistor (Mode selection)	0 : Disable 1: Enable (With PTC, the inverter immediately trips with $0 \mathrm{H}^{\prime} 4$ displayed.) 0.00 to 5.00 V 2: Enable (With PTC, the inverter issues output signal THM and continues to run.	-	-	Y	0
H27	(Level)	0.00 to 5.00	0.01	V	Y	1.60
H28	Droop control	-60.0 to 0.0	0.1	Hz	Y	0.0
430	Communications Link Function (Mode selection)	Frequency command Run command O: F01/C30 F02 1: RS-485 F02 2: F01/C30 RS-485 3: RS-485 RS-485 4: RS-485 (option) F02 5: RS-485 (option) RS-485 6: F01/C30 RS-485 (option) 7: RS-485 RS-485 (option) 8: RS-485 (option) RS-485 (option)	-	-	Y	0
H4?	Capacitance of DC Link Bus Capacitor	Indication for replacing DC link bus capacitor (0000 to FFFF: Hexadecimal)	1	-	N	-
H43	Cumulative Run Time of Cooling Fan	Indication of cumulative run time of cooling fan for replacement	-	-	N	-
Н44	Startup Times of Motor 1	Indication of cumulative startup times	-	-	N	-
H45	Mock Alarm	0: Disable 1: Enable (Once a mock alarm occurs, the data automatically returns to 0 .)	-	-	N	0
H47	Intial Capacitance of DC Link Bus Capacitor	Indication for replacing DC link bus capacitor (0000 to FFFF: Hexadecimal)	-	-	N	Set at factory shipping
448	Cumulive Run Tme of Capaciors on Pinted Circiil Baads	Indication for replacing capacitors on printed circuit boards (0000 to FFFF: Hexadecimal). Resettable.	-	-	N	-
449	Starting Mode (Delay time)	0.0 to 10.0	0.1	s	Y	0.0
450	Non-linear V/f Pattern, 1 (Frequency)	0.0 : Cancel 0.1 to 400.0	0.1	Hz	Y	0.0
H5 i	(Voltage)	0 to 240 : Output an AVR-controlled voltage (for 200 V class series) 0 to 500 : Output an AVR-controlled voltage (for 400 V class series)	1	V	Y2	0
452	Non-linear V/f Pattern,2 (Frequency)	0.0 : Cancel 0.1 to 400.0	0.1	Hz	Y	0.0
453	(Voltage)	0 to 240: Output an AVR-controlled voltage (for 200 V class series) 0 to 500: Output an AVR-controlled voltage (for 400 V class series)	1	V	Y2	0
H54	ACC/DEC time (Jogging operation)	0.00 to 3600 *ACC time and DEC time are common.	0.01	s	Y	6.00
H56	Deceleration Time for Forced Stop	0.00 to 3600	0.01	s	Y	6.00

OH codes: High Performance Functions

OA codes: Motor 2 Parameters

Func. Code	Name	Data setting range	Min.	Unit	$\begin{array}{\|c} \hline \text { Data } \\ \text { copy } 2 \end{array}$	Default setting
P吅	Maximum Frequency 2	25.0 to 400.0	0.1	Hz	Y	60.0
R02	Base Frequency 2	25.0 to 400.0	0.1	Hz	Y	60.0
803	Rated Voltage at Base Frequency 2	0: Output a voltage in proportion to input voltage 80 to 240: Output an AVR-controlled voltage (for 200 V class series) 160 to 500: Output an AVR-controlled voltage (for 400 V class series)	1	V	Y2	220
804	Maximum output Voltage 2	80 to 240 V : Output an AVR-controlled voltage (for 200 V class series) 160 to 500 V : Output an AVR-controlled voltage (for 400 V class series)	1	V	Y2	380
805	Torque Boost 2	0.0 to 20.0(percentage with respect to "A03: Rated Voltage at Base Frequency 2") Note: This setting takes effect when $\mathrm{A} 13=0,1,3$, or 4 .	0.1	\%	Y	Depending on the inverter capacity
805	Electronic Thermal Overload Protection for Motor 2 (Select motor characteristics)	1 : For a general-purpose motor with shaft-driven cooling fan 2 : For an inverter-driven motor, non-ventilated motor, or motor with separately powered cooling fan	-	-	Y	1
807	(Overload detection level)	0.00 : Disable 1 to 135% of the rated current (allowable continuous drive current) of the motor	0.01	A	Y1Y2	10\%\% oftemotorated arent
808	(Thermal time constant)	0.5 to 75.0	0.1	min	Y	5.0
809	DC (Braking starting frequency)	0.0 to 60.0 Hz	0.1	Hz	Y	0.0
810	Braking 2 (Braking level)	0 to 100	1	\%	Y	0
R11	(Braking time)	0.00 : Disable 0.01 to 30.00	0.01	s	Y	0.00
8 812	Starting Frequency 2	0.1 to 60.0	0.1	Hz	Y	0.5
813	Load Selection/ Auto Torque Boost / Auto Energy Saving Operation 2	0 : Variable torque load 1 : Constant torque load 2 : Auto-torque boost 3 : Auto-energy saving operation (Variable torque load during ACC/DEC) 4 : Auto-energy saving operation (Constant torque load during ACC/DEC) 5 : Auto-energy saving operation (Auto-torque boost during ACC/DEC)	-	-	Y	1
814	Control Mode Selection 2	0 : V/f operation with slip compensation inactive 1 : Dynamic torque vector operation 2 : V/f operation with slip compensation active 3 : V/f operation with PG 4 : Dynamic torque vector operation with PG	-	-	Y	0

*1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display
(Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows: "1" for -200 to $-100, " 0.1$ " for -99.9 to $-10.0, ~ " 0.01 "$ for -9.99 to $-0.01, " 0.01$ " for 0.00 to 99.99 , and " 0.1 " for 100.0 to 200.0
*2 Symbols in the "Data copy" column
Y: Will be copied unconditionally.
Y1: Will not be copied if the rated capacity differs from the source inverter.
Y2: Will not be copied if the rated input voltage differs from the source inverter.
N : Will not be copied.

Functions Settings

Functions Settings

-A codes: Motor 2 Parameters

Func. Code	Name	Data setting range	Min.	Unit	$\begin{array}{c\|} \hline \text { Data } \\ \text { copy } \\ \hline \end{array}$	Default setting
7 15	Motor 2 $\begin{array}{r}\text { (No. of poles) } \\ \text { (Rated capacity) } \\ \text { (Rated current) } \\ \text { (Auto-tuning) }\end{array}$	2 to 22	2	Pole	Y1Y2	4
815		0.01 to 30.00 (where, P99 data is 0, 3, or 4.)	0.01	kW	Y1Y2	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Rated capacity } \\ \text { of motor } \end{array} \\ \hline \end{array}$
		0.01 to 30.00 (where, $\mathrm{P99}$ data is 1.)	0.01	HP^{-1}		
817		0.00 to 100.0	0.01	A	Y1Y2	
818		0 : Disable 1 : Enable (Tune \%R1 and \%X while the motor is stopped.) 2 : Enable (Tune \%R1, \%X and rated slip while the motor is stopped, and no-load current while running.	-	-	N	0
819	(ON-Line tuning)	$\begin{aligned} & 0 \text { : Disable } \\ & 1 \text { : Enable } \\ & \hline \end{aligned}$	-	-	Y	0
820	(No-load current)	0.00 to 50.00	0.01	A	Y1Y2	
R2 1	(\%R1)	0.00 to 50.00	0.01	\%	Y1Y2	
R22	(\%X)	0.00 to 50.00	0.01	\%	Y1Y2	Rated alue offijistandar mior
923	(Slip compensation gain for driving)	0.0 to 200.0	0.01	\%	Y	100.0
824	(Slip compensation response time)	0.00 to 10.00	0.01	s	Y1Y2	0.50
825	(Slip compensation gain for braking)	0.0 to 10.00	0.01	\%	Y	100.0
825	(Rated slip frequency)	0.00 to 15.00	0.01	Hz	Y1Y2	Rided vilue ofyivisandard mor
839	Motor 2 Selection	```0 : Motor characteristics 0 (Fuji standard motors, 8-series) 1 : Motor characteristics 1 (HP rating motors) 3 : Motor characteristics 3 (Fuji standard motors, 6-series) 4 : Other motors```	-	-	Y1Y2	0
840	Slip compensation 2 (Operating conditions)	0 : Enable during ACC/DEC and enable at base frequency or above 1 : Disable during ACC/DEC and enable at base frequency or above 2 : Enable during ACC/DEC and disable at base frequency or above 3 : Disable during ACC/DEC and disable at base frequency or above	-	-	Y	0
84 :	Output Curent Fluctuation Damping Gain for Motor 2	0.00 to 0.40	0.01	-	Y	0.20
845	Cumulative Motor Run Time 2	Change or reset the cumulative data	-	-	N	-
845	Startup Times of Motor 2	Indication of cumulative startup times	-	-	N	-

OJ codes: Application Functions

Func. Code	Name	Data setting range	Min.	Unit	$\begin{array}{c\|} \hline \text { Data } \\ \text { copy }{ }^{2} \end{array}$	Default setting
U'0	PID Control (Mode selection)	0 : Disable 1 : Enable (Process control, normal operation) 2 : Enable (Process control, inverse operation) 3 : Enable (Dancer control)	-	-	Y	0
U103	(Remote command SV)	0 : UP/DOWN keys on keypad 1 : PID command 1 3 : Terminal command UP /DOWN control 4 : Command via communications link	-	-	Y	0
403	P (Gain)	0.000 to 30.000 *1	0.001	Times	Y	0.100
404	1 (Integral time)	0.0 to $3600.0 * 1$	0.1	s	Y	0.0
405	D (Differential time)	0.0 to $600.00 * 1$	0.01	s	Y	0.00
405	(Feedback filter)	0.0 to 900.0	0.1	s	Y	0.5
¢ 10	PID Control (Anti reset windup)	0 to 200	1	\%	Y	200
dit	(Select alarm output)	0 : Absolute-value alarm 1 : Absolute-value alarm (with Hold) 2 : Absolute-value alarm (with Latch) 3 : Absolute-value alarm (with Hold and Latch) 4 : Deviation alarm 5 : Deviation alarm (with Hold) 6 : Deviation alarm (with Latch) 7 : Deviation alarm (with Hold and Latch)	-	-	Y	0
Sit	(Upper level alarm (AH))	-100 to 100	1	\%	Y	100
413	(Lower level alarm (AL))	-100 to 100	1	\%	Y	0
uig	(Upper limit of PID process output)	-150 to 150999 : F Disable	1	\%	Y	999
4 is	(Lower limit of PID process output)	-150 to 150999 : F Disable	1	\%	Y	999
U56	(Speed command filter)	0.00 to 5.00	0.01		Y	0.10
4	(Dancer reference position)	-100 to 100	1	\%	Y	0
U58	(Detection width of Dancer position deviation)	$\begin{aligned} & \hline 0 \text { : Disable switching PID constant } \\ & 1 \text { to } 100 \end{aligned}$	1	\%	Y	0
459	P (gain) 2	0.000 to 30.00 *	0.001	times	Y	0.100
460	1 (Integration time) 2	0.0 to 3600.0 *	0.1	s	Y	0.0
U6	D (Derivative time) 2	0.00 to $600.00 * 1$	0.01	s	Y	0.00
462	(Selection PID control block) (PID control block Selection)	Bit 0 : PID output pole $0=$ addition, $1=$ subtraction Bit 1 : Select compensation of output ratio $0=$ speed command, $1=$ ratio	1	-	Y	0
463	Overload stop (Detection value)	0 : Torque 1: Current	-	-	Y	0
454	(Detection level)	20 to 200	0.1	\%	Y	100
U65	(Mode selection)	0 : Disable 1 : Decelerate to stop 2 : Coast to a stop 3 : Hit mechanical stop	-	-	Y	0
U65	(Operation condition)	0 : Enable at constant speed and during deceleration 1 : Enable at constant speed 2 : Enable anytime	-	-	Y	0
U67	(Timer)	0.00 to 600.00	0.01	s	Y	0
U68	Braking signal (Released current)	0 to 200	1	\%	Y	100
469	(Brake OFF frequency)	0.0 to 25.0	0.1	Hz	Y	1.0
470	(Brake OFF timer)	0.0 to 5.0	0.1	s	Y	1.0
471	(Brake ON frequency)	0.0 to 25.0	0.1	Hz	Y	1.0
412	(Brake ON timer)	0.0 to 5.0	0.1	s	Y	1.0

J codes: Application Functions

Func. Code	Name	Data setting range	Min.	Unit	$\begin{array}{\|c} \hline \text { Data } \\ \text { copy }{ }^{2} \\ \hline \end{array}$	Default setting
473	Position control (the start timer)	0.0 to 1000.0	0.1	s	Y	0.0
474	(Start point: MSD)	-999 to 999	1	p	Y	0
- 475	(Start point: LSD)	[P], 0 to 9999	1	p	Y	0
${ }^{\circ} 76$	(Position preset: MSD)	-999 to 999	1	p	Y	0
- 47	(Position preset: LSD)	[P], 0 to 9999	1	p	Y	0
478	(Creep speed switch point: MSD)	0 to 999	1	p	Y	0
\square	(Creep speed switch point: LSD)	0 to 9999	1	p	Y	0
480	(Creep speed)	0 to 400	1	Hz	Y	0
U8i	(Stopping position: MSD)	-999 to 999	1	p	Y	0
482	(Stopping position: LSD)	0 to 9999	1	p	Y	0
483	(Completion width)	0 to 9999	1	p	Y	0
484	(End timer)	0.0 to 1000.0	0.1	s	Y	0.0
U85	(Coasting compensation)	0 to 9999	1	p	Y	0
U ${ }^{185}$	(Stopping position specifying method)	0,1	-	-	Y	0
$\begin{array}{r}187 \\ \hline 189\end{array}$	(Position pre-set condition)	0, 1,2	-	-	Y	0
U88	(Position detecting direction)	0,1	-	-	Y	0
490	Overload stopping, torque limit P (Gain)	0.000 to 2.000, 999	0.001	-	Y	999
US 1	Function, torque limit I (Integral time)	0.001 to 9.999, 999	0.001	s	Y	999
US?	Current control level	50.0 to 150.0	0.1	\%	Y	100.0

Oy codes: Link Functions

Func. Code	Name	Data setting range		Min.	Unit	$\begin{array}{\|c\|} \hline \text { Data } \\ \text { copy }{ }^{2} \\ \hline \end{array}$	Default setting
401	RS-485 Communication (Standard) (Station address) (Communications error processing)	1 to 255		1	-	Y	1
402		0 : Immediately trip with alarm $E r B$ 1 : Trip with alarm $\varepsilon_{r}-8$ after running for the period specified by timer y03 2 : Retry during the period specified by timer y13.If the retry fails, trip with alarm ε_{r}. If it succeeds, continue to run. 3 : Continue to run		-	-	Y	0
403	(Timer) (Baud rate)	0.0 to 60.0		0.1	s	Y	2.0
404		$0: 2400 \mathrm{bps}$$1: 4800 \mathrm{bps}$$2: 9600 \mathrm{bps}$$3: 19200 \mathrm{bps}$$4: 38400 \mathrm{bps}$		-	-	Y	3
405	(Data length) (Parity check)	$\begin{aligned} & 0: 8 \text { bits } \\ & 1: 7 \text { bits } \end{aligned}$		-	-	Y	0
405		0 : None (2 stop bits for Modbus RTU) 1 : Even parity (1 stop bit for Modbus RTU) 2 : Odd parity (1 stop bit for Modbus RTU) 3 : None (1 stop bit for Modbus RTU)		-	-	Y	0
407	(Stop bits)	$\begin{aligned} & \hline 0: 2 \text { bits } \\ & 1: 1 \text { bit } \end{aligned}$		-	-	Y	0
408	(No-response error detection time)	$\begin{aligned} & 0: \text { No detection } \\ & 1 \text { to } 60 \end{aligned}$		1	s	Y	0
409	(Response interval)	0.00 to 1.00		0.01	s	Y	0.01
410	(Protocol selection)	0 : Modbus RTU protocol 1 : FRENIC Loader protocol (SX protocol) 2: Fuji general-purpose inverter protocol		-	-	Y	1
$31 i$	RS-485 Communication (Option) (Station address) (Communications error processing)	1 to 255		1	-	Y	1
512		0 : Immediately trip with alarm $E r^{P}$ 1 : Trip with alarm $E_{r} P$ after running for the period specified by timer y13 2 : Retry during the period specified by timer y 13 . If the retry fails, trip with alarm $E_{r} P$. If it succeeds, continue to run. 3 Continue to run		-	-	Y	0
313	(Timer)	0.0 to 60.0		0.1	s	Y	2.0
914	(Baud rate)	$\begin{array}{\|l\|} \hline 0: 2400 \mathrm{bps} \\ 1: 4800 \mathrm{bps} \\ 2: 9600 \mathrm{bps} \\ 3: 19200 \mathrm{bps} \\ 4: 38400 \mathrm{bps} \\ \hline \end{array}$		-	-	Y	3
315	(Data length)	$\begin{array}{\|l} \hline 0: 8 \text { bits } \\ 1: 7 \text { bits } \\ \hline \end{array}$		-	-	Y	0
315	(Parity check)	0 : None (2 stop bits for Modbus RTU) 1 : Even parity (1 stop bit for Modbus RTU) 2 : Odd parity (1 stop bit for Modbus RTU) 3 : None (1 stop bit for Modbus RTU)		-	-	Y	0
317	(Stop bits)	$\begin{array}{\|l\|l} \hline 0: 2 \text { bits } \\ 1: 1 \text { bit } \\ \hline \end{array}$		-	-	Y	0
318	(No-response error detection time)	$\begin{array}{\|l\|} \hline 0 \text { : No detection } \\ 1 \text { to } 60 \\ \hline \end{array}$		1	s	Y	0
	(Response interval)	0.00 to 1.00		0.01	s	Y	0.01
420	(Protocol selection)	0 : Modbus RTU protocol 2 : Fuji general-purpose inverter protocol		-	-	Y	0
498	Bus Link Function (Mode selection)	Frequency command 0 : Follow H3O data 1 : Via field bus option 2 : Follow H3O data 3 : Via field bus option	Run command Follow H30 data Follow H30 data Via field bus option Via field bus option	-	-	Y	0
499	Loader Link Function (Mode selection)	Frequency command 0 : Follow H 30 and y98 data 1 : Via RS-485 link (Loader) 2 : Follow H 30 and y98 data 3 : Via RS-485 link (Loader)	Run command Follow H30 and y98 data Follow H30 and y98 data Via RS-485 link (Loader) Via RS-485 link (Loader)	-	-	N	0

[^4]Y2: Will not be copied if the rated input voltage differs from the source inverter N : Will not be copied.
*3 Reserved for the maker. Do not set any data.
<Changing, validating, and saving function code data when the motor is running> \square : Impossible, \square : Possible (Change data with \triangle keys and then save/validate it with (aey), \square : Possible (Change and validate data with \wedge keys and then save it with (i) key)

Functions Settings

- Functions Settings

Oo codes: Link Functions

Func. Code	Name	Data setting range	Min.	Unit	$\begin{array}{\|c\|} \hline \text { Data } \\ \text { copy }^{* 2} \end{array}$	Default setting
OD i	Commandfeedback input (Input form selection)	0, 1, 2, 10, 11, 12, 20, 21, 22	1	-	Y	0
002		0.01 to 200.00	0.01	-	Y	10.00
003		0.000 to 5.000	0.001	s	Y	0.100
004		0.000 to 5.000	0.001	s	Y	0.020
005	(Pulse line input) $\begin{array}{r}\text { (Encode pulse number) } \\ \text { (Filter time constant) }\end{array}$	20 to 3600	1	-	Y	1024
005		0.000 to 5.000	0.001	s	Y	0.005
007	(Pulse compensation coefficient 1)	1 to 9999	1	-	Y	1
008		1 to 9999	1	-	Y	1
009	Feedback(Feedback input) (Encoder pulse number) (Filter time constant)	20 to 3600	1	-	Y	1024
$\bigcirc 10$		0.000 to 5.000	0.001	s	Y	0.005
011	(Pulse compensation coefficient 1)	1 to 9999	1	-	Y	1
012	(Pulse compensation coefficient 2)	1 to 9999	1	-	Y	1
013	Speed control (Output limiter)	0.00 to 100.00	0.01	\%	Y	100.00
014	Reserved *3	0.1	1	-	Y	0
015		0.1	1	-	Y	0
$\bigcirc 15$	Reserved *3 Reserved *3	0 to 255		-	Y	0
017	Excessive speed deviation (Level) (Timer)	0 to 50	1	\%	Y	10
$\bigcirc 18$		0.0 to 10.0	0.1	s	Y	0.5
019	PG abnormal error selection	0, 1, 2	1	-	Y	2
020	DIO option (DI mode selection)	0: 8 bit binary setting 1: 12 bit binary setting 4: BCD 3-digit setting 0 to 99.9 5: BCD 3-digit setting 0 to 999	-	-	Y	0
02 !	(DO mode selection)	0: Output frequency (befor slip compensation) 1: Out put frequency (after slip compensation) 2: Output current 3: Output voltage 4: Output torque 5: Overload rate 6: Power consumption 7: PID feedback amount 9: DC link circuit voltage 13: Motor output 15: PID command (SV) 16: PID command (MV) 99: Individual signal output	-	-	Y	0
027	Transmission error (Operation selection) (Timer selection)	0 to 15	1	-	Y	0
028		0.0 to 60.0	0.1	s	Y	0.0
$\square 30$	Bus setting parameter 1	0 to 255	.	-	Y	,
031	Bus setting parameter 2	0 to 255	1	-	Y	0
032	Bus setting parameter 3	0 to 255	1	-	Y	0
$\square 33$	Bus setting parameter 4	0 to 255	1	-	Y	0
034	Bus setting parameter 5	0 to 255	1	-	Y	0
035	Bus setting parameter 6	0 to 255	1	-	Y	0
036	Bus setting parameter 7	0 to 255	1	-	Y	0
037	Bus setting parameter 8	0 to 255	1	-	Y	0
038	Bus setting parameter 9	0 to 255	1	-	Y	0
039	Bus setting parameter 10	0 to 255	1	-	Y	0
040	Writing function code allocation 1	0000 H to FFFFH	1	-	Y	0000H
041	Writing function code allocation 2	0000 H to FFFFFH	1	-	Y	0000H
042	Writing function code allocation 3	0000 H to FFFFFH	1	-	Y	0000H
043	Writing function code allocation 4	0000 H to FFFFFH	1	-	Y	0000H
044	Writing function code allocation 5	0000 H to FFFFFH	1	-	Y	0000H
045	Writing function code allocation 6	0000 H to FFFFFH	1	-	Y	0000H
045	Writing function code allocation 7	0000 H to FFFFFH	1	-	Y	0000H
047	Writing function code allocation 8	0000 H to FFFFFH	1	-	Y	0000H
048	Read function code allocation 1	0000 H to FFFFH	1	-	Y	0000H
049	Read function code allocation 2	0000 H to FFFFFH	1	-	Y	0000H
050	Read function code allocation 3	0000 H to FFFFFH	1	-	Y	0000H
051	Read function code allocation 4	0000 H to FFFFH	1	-	Y	0000H
052	Read function code allocation 5	0000 H to FFFFFH	1	-	Y	0000H
053	Read function code allocation 6	0000 H to FFFFFH	1	-	Y	0000H
054	Read function code allocation 7	0000 H to FFFFFH	1	-	Y	0000H
055	Read function code allocation 8	0000 H to FFFFFH		-	Y	0000H
055	Read function code allocation 9	0000 H to FFFFFH	1	-	Y	0000H
057	Read function code allocation 10	0000 H to FFFFH	1	-	Y	0000H
058	Read function code allocation 11	0000 H to FFFFFH	1	-	Y	0000H
059	Read function code allocation 12	0000 H to FFFFFH	1	-	Y	0000H

[^5]*3 Reserved for the maker. Do not set any data
<Changing, validating, and saving function code data when the motor is running> \square : Impossible, \square : Possible (Change data with $)$ keys and then save/validate it with key), \square : Possible (Change and validate data with keys and then save it with - key)

[^0]: 4) Fuli's 4 -pole standara motor
[^1]: * Dimensions when installing the supplied rear cover

[^2]: Note: For the inverter type FRN0.1E1S-2 \quad the symbol \square is replaced with either of the following alphabets.
 ■ A(Asia), K(Koria, Taiwan), C(China), J(Japan)

[^3]: ${ }^{1} 1$ When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
 (Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows: "1" for -200 to -100, "0.1" for -99.9 to $-10.0, ~ " 0.01$ " for -9.99 to $-0.01, ~ " 0.01$ " for 0.00 to 99.99 , and " 0.1 " for 100.0 to 200.0
 *2 Symbols in the "Data copy" column
 Y: Will be copied unconditionally.
 Y1: Will not be copied if the rated capacity differs from the source inverter.

[^4]: *1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
 (Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows "1" for -200 to -100, "0.1" for -99.9 to $-10.0, ~ " 0.01$ " for -9.99 to $-0.01, ~ " 0.01$ " for 0.00 to 99.99 , *2 and " 0.1 " for 100.0 to 200.0
 *2 Symbols in the "Data copy" column
 Y1: Will not be copied if the rated capacity differs from the source inverter.

[^5]: *1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
 (Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows: 1 " for -200 to $-100, " 0.1$ " for -99.9 to $-10.0, ~ " 0.01$ " for -9.99 to $-0.01, ~ " 0.01 "$ for 0.00 to 99.99 and " 0.1 " for 100.0 to 200.0
 *2 Symbols in the "Data copy" colum
 Y: Will be copied unconditionall
 Y1: Will not be copied if the rated capacity differs from the source inverter.

